
Neural Parametric Mixtures for Path Guiding
Honghao Dong
Peking University
Beijing, China

cuteday@pku.edu.cn

Guoping Wang
Peking University
Beijing, China

wgp@pku.edu.cn

Sheng Li∗
Peking University
Beijing, China

lisheng@pku.edu.cn

ABSTRACT
Previous path guiding techniques typically rely on spatial subdi-
vision structures to approximate directional target distributions,
which may cause failure to capture spatio-directional correlations
and introduce parallax issue. In this paper, we present Neural Para-
metric Mixtures (NPM), a neural formulation to encode target distri-
butions for path guiding algorithms.We propose to use a continuous
and compact neural implicit representation for encoding parametric
models while decoding them via lightweight neural networks. We
then derive a gradient-based optimization strategy to directly train
the parameters of NPM with noisy Monte Carlo radiance estimates.
Our approach efficiently models the target distribution (incident ra-
diance or the product integrand) for path guiding, and outperforms
previous guiding methods by capturing the spatio-directional cor-
relations more accurately. Moreover, our approach is more training
efficient and is practical for parallelization on modern GPUs.

CCS CONCEPTS
• Computingmethodologies→Ray tracing;Neural networks.

KEYWORDS
Ray Tracing, Global Illumination, Sampling and Reconstruction,
Neural Networks, Mixture Models
ACM Reference Format:
Honghao Dong, Guoping Wang, and Sheng Li. 2023. Neural Parametric
Mixtures for Path Guiding. In Special Interest Group on Computer Graphics
and Interactive Techniques Conference Conference Proceedings (SIGGRAPH
’23 Conference Proceedings), August 6–10, 2023, Los Angeles, CA, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3588432.3591533

1 INTRODUCTION
The efficiency of path tracing relies heavily on the sampling strat-
egy. To further improve its efficiency and robustness, path guiding
algorithms leverage the knowledge gained during rendering to fa-
cilitate the process of light-path construction, thereby reducing
noise. To acquire better importance sampling distribution, local
path guiding techniques employ previous radiance estimates to
learn an approximation of spatial incident radiance fields, which
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0159-7/23/08. . . $15.00
https://doi.org/10.1145/3588432.3591533

are then used to guide the construction of paths. In practice, current
methods typically use some representation (e.g., Gaussian mixtures
[Herholz et al. 2016; Vorba et al. 2014], quadtrees [Müller et al.
2017]) to approximate the directional distribution of incident ra-
diance. A spatial subdivision structure (e.g., kd-tree [Dodik et al.
2022], or octree [Bus and Boubekeur 2017]) is then used to store
these distributions, thus accounting for the spatial variations.

However, several key deficiencies remain in their paradigm.
Most methods learn the marginalized incident radiance distribu-
tion within each subdivided spatial region. This fails to capture
the spatio-directional correlations within the spatial discretizations,
and could cause artifacts (e.g., parallax error, Fig 1(a)). Moreover,
their spatial subdivision structures are subject to frequent recon-
struction for finer-grained spatial resolution, which needs extra
overhead and require a long training time to converge. Meanwhile,
it is challenging to efficiently fit these specific directional distribu-
tions from noisy samples, especially in an online manner [Ruppert
et al. 2020].

While an adaptive and robust spatial representation is difficult
to achieve with manually designed subdivision schemes, we saw
the recent success of neural implicit representation in compactly
modeling spatially varying functions with fine-grained and high-
frequency details [Mildenhall et al. 2020]. In this work, we exploit
the great expressiveness of neural implicit representation while
preserving the desirable properties of parametric mixture models
(e.g. efficient importance sampling) for path guiding algorithms.
We thereby present Neural Parametric Mixtures (NPM), which use
a continuous and compact implicit representation to encode spatio-
directional target distributions, and decode them into PMMs with
lightweight neural networks for fast importance sampling.We show
that our NPM representation, without explicit spatial subdivision
schemes, can be efficiently trained simply using gradient-based
optimization techniques. Specifically, our method has advantages
in the following aspects:

First, our continuous implicit representation of spatial radiance
fields naturally captures the correlations between spatial positions
and directional target distributions. By smoothly interpolating and
decoding the implicit representations with neural networks, our
method inherently avoids the issues due to spatial discretization,
thus resulting in higher performance.

Second, our compact representation avoids the extra overhead
and long training time caused by the iterative reconstruction strate-
gies applied to the explicit spatial subdivision structures. Combined
with our simple optimization based on stochastic gradient descent,
our method outperforms other guiding methods even with fewer
training samples. In addition, our method is practical and perfor-
mant for parallelization on GPU.

Lastly, our method can learn the product distribution (i.e., multi-
plied by the BSDF and the cosine term). This further reduces the

https://orcid.org/0000-0001-7247-1301
https://orcid.org/0000-0001-7819-0076
https://orcid.org/0000-0002-8901-2184
https://doi.org/10.1145/3588432.3591533
https://doi.org/10.1145/3588432.3591533

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Honghao Dong, Guoping Wang, and Sheng Li

noise with a modest computational overhead while not requiring
the extra effort of previous solutions (e.g., fitting each BSDF with
pre-computed parametric models).

2 RELATEDWORK
Path Guiding. To achieve better sampling strategies, local path

guiding techniques leverage previous radiance estimates (either on-
line or during a pre-computation process) to build an approximation
of the incident radiance fields, which is used to guide subsequent
sampling. Early approaches used simple bases such as histograms
for importance sampling, e.g. built from a photonmap [Jensen 1995]
or collected radiance estimates with 5-D tree structures [Lafortune
and Willems 1995]. Subsequent work has developed various tech-
niques to construct the guiding distribution, e.g., Gaussian mixtures
[Vorba et al. 2014], quad-trees [Müller et al. 2017], which is often
stored in spatial data structures (e.g., kd-tree and octree) to account
for spatial variations of the distributions.

Deep learning techniques have also been explored recently, achiev-
ing improvements while often with less practical performance. For
example, convolutional networks could be used to reconstruct the
learned noisy radiance field [Huo et al. 2020; Zhu et al. 2021]. Spe-
cially designed neural networks could also model complex mani-
folds [Dinh et al. 2017], while allowing samples to be drawn directly
from the learned distribution [Müller et al. 2019]. However, the
prohibitive computational cost prevents its practical application
[Müller et al. 2019; Vorba et al. 2019]. Instead of directly importance
sampling using neural networks, we encode the target distribution
into implicit neural representation, and use only lightweight MLPs
to decode it into parametric mixtures for efficient sampling. We
show that our method can be efficiently trained (< 10s per scene
on a single GPU) while being sufficiently robust and practical.

Parametric Mixture Models. Parametric mixture models (PMMs)
are convex combinations of parametric distributions, and are often
used to approximate directional distributions in graphics appli-
cations. They have many desirable properties, e.g., fast sampling,
and closed-form solutions for products, convolutions and integrals.
Several types of PMMs (e.g., Gaussian mixtures [Dodik et al. 2022;
Vorba et al. 2014] and von Mises-Fisher mixtures [Ruppert et al.
2020]) are widely used in the recently developed path guiding al-
gorithms. Several recent works also use PMMs to fit BSDFs with
precomputation [Herholz et al. 2016; Ruppert et al. 2020], and mul-
tiply them with the learned incident radiance to achieve product
sampling.

Parametric models can also be predicted by neural networks,
enabling new possibilities for e.g. lighting [Currius et al. 2020] and
reconstruction [Yu et al. 2021] tasks. In this work, we use neural rep-
resentations to encode parametric mixtures for efficient sampling.
Our method is also naturally extensible to product sampling.

Implicit Neural Representation. Following the success of using
neural networks to represent 3D scenes implicitly [Mildenhall et al.
2020], the concept of neural representation has been popularized
and applied to various tasks. They use sparse input images to opti-
mize the spatial radiance fields via a differentiable volume rendering
procedure, thus enabling novel view synthesis. Inspired by its re-
cent successful applications [Diolatzis et al. 2022; Müller et al. 2022],

we exploit a continuous and compact implicit neural representation
to encode the spatio-directional target distributions for path guid-
ing algorithms. While the ground truth target distribution (i.e., the
incident radiance or product distribution) is unknown, our NPM
representation can be optimized online using minibatch stochastic
gradient descent (SGD), where the gradients for training are esti-
mated by Monte Carlo integration using noisy radiance estimates.

3 PRELIMINARY
Monte Carlo Integration. Light transport algorithms are generally

based on the rendering equation [Kajiya 1986]:

𝐿o
(
x, 𝜔o

)
= 𝐿e

(
x, 𝜔o

)
+
∫
Ω
𝑓s
(
x, 𝜔o, 𝜔i

)
𝐿i

(
x, 𝜔i

) ��cos𝜃i�� d𝜔i, (1)

which defines the relationship between the outgoing radiance 𝐿o,
emitted radiance 𝐿𝑒 , and the integrated incident radiance 𝐿i, at
shading point x. Monte Carlo integration is used to obtain an esti-
mate of the reflection integral 𝐿𝑟 using an average of 𝑁 samples.
In the case where 𝑁 = 1:〈

𝐿r
(
x, 𝜔o

)〉
=
𝑓s
(
x, 𝜔o, 𝜔i

)
𝐿i

(
x, 𝜔i

) ��cos𝜃i��
𝑝 (𝜔i | x, 𝜔o)

, (2)

where ⟨𝐿r
(
x, 𝜔o

)
⟩ is an unbiased estimate of the outgoing radi-

ance 𝐿r
(
x, 𝜔o

)
, and 𝜔𝑖 is the incident direction sampled with some

directional probability distribution 𝑝 (𝜔i | x, 𝜔o). The variance of
this estimator 𝑉 [⟨𝐿r⟩] can be reduced if the sampling distribution
resembles the shape of the integrand, and could even reach zero
variance if being proportional to it (i.e., 𝑝 ∝ 𝑓𝑠 · 𝐿i cos𝜃𝑖). This,
however, is difficult to achieve with only BSDF importance sam-
pling, leaving the remaining part of the integrand (i.e., the incident
radiance) unknown, resulting in a relatively high variance of the
MC estimator. Path guiding algorithms, on the other hand, manage
to obtain better importance sampling strategies often by using pre-
vious radiance samples to approximate the incident radiance 𝐿i or
the full integrand 𝑓𝑠 · 𝐿i cos𝜃𝑖 , which will be discussed later.

Von Mises-Fisher Mixtures. We use the von Mises-Fisher (vMF)
distribution as the basis of NPM. The vMF distribution is defined
as:

𝑣 (𝜔 | 𝜇, 𝜅) = 𝜅

4𝜋 sinh𝜅 exp
(
𝜅𝜇𝑇𝜔

)
, (3)

where 𝜇 ∈ S2 and 𝜅 ∈ [0, +∞) defines the direction and precision
(sharpness) of the vMF distribution. The vMFmixture model (VMM)
is thus a convex combination of 𝐾 vMF components/lobes:

V(𝜔 | Θ) =
𝐾∑︁
𝑖=1

𝜆𝑖 · 𝑣
(
𝜔 | 𝜇𝑖 , 𝜅𝑖

)
, (4)

where Θ contains the parameters (𝜇𝑖 , 𝜅𝑖) and weights (𝜆𝑖) of each
vMF component. The vMFmixtures have many desirable properties,
e.g., fewer parameters (4 floats per component), efficient importance
sampling, and closed-form product and integration, which together
constitute the reason for choosing it as the basis of NPM.

Our key is to encode the vMF mixtures with our implicit neu-
ral representation, then decode them with lightweight MLPs, and
train them to effectively model the target distributions for path
guiding algorithms. Other parametric basis functions (e.g., Gauss-
ian mixtures) could be integrated into our method using a similar
paradigm.

Neural Parametric Mixtures for Path Guiding SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

4 NEURAL PARAMETRIC MIXTURES
In this section, we present our Neural Parametric Mixtures (NPM)
technique for local path guiding.We first showhow to encode/decode
target distributions with NPM in a simple setup (i.e., learning in-
cident radiance fields, Sec. 4.1), then we derive the optimization
method for NPM based on minibatch stochastic gradient descent
(Sec. 4.2). Finally, we show how our NPM could naturally benefit
from learning the full integrand (to account for the BSDF term), as
well as the other extensions for better learning target distributions
(Sec. 4.3). An overview of our method is illustrated in Fig. 2.

4.1 Radiance-based NPM
In order to acquire a better importance sampling strategy, we should
obtain an approximation of the incident radiance distribution using
previous radiance estimates, known as the radiance-based local
path guiding [Herholz et al. 2016; Rath et al. 2020]. Specifically, we
want to use the vMF mixtures to be approximately proportional to
the incident radiance, at a given shading position x:

V
(
𝜔𝑖 | Θ (x)

)
∝ 𝐿i (x, 𝜔𝑖), (5)

where Θ is conditioned on x to account for the spatial variation of
the target distribution. Previous work achieves this with specific
spatial subdivision strategies (e.g., kd-tree, octree). However, this
spatial discretization introduces artifacts (e.g., resulting from paral-
lax, Fig. 1 (a)), and is subject to frequent reconstruction to converge
to a fine grained spatial subdivision, as discussed in Sec. 1.

Instead, we use an implicit neural representation to encode the
target distribution compactly. This allows the spatial variation of
the distribution to be continuously accounted for, thus better cap-
turing spatio-directional correlations. Technically, given a shading
position x in the scene, our NPM would output the guiding distri-
bution that approximates the target distribution (Eq. 5). The output
guiding distribution is defined using a set of parameters Θ̂(x):

NPM(x | Φ) = Θ̂(x), (6)

where Φ are the trainable parameters of the implicit representation,
and Θ̂ are the output decoded parameters, defining a vMF mixture
V(𝜔𝑖 | Θ̂(x)) that is trained to approximate 𝐿i (x, 𝜔𝑖) (Eq. 5). By
continuously conditioning the learned distribution Θ on spatial
positions x, our method inherently avoids the above issues caused
by spatial discretizations. We achieve the above mapping by using
a lightweight network to decode this parametric distribution from
the implicit neural representation. To make sure that we get a valid
vMF mixture (i.e., 𝜆𝑖 , 𝜅𝑖 > 0, 𝜇𝑖 ∈ S2, and

∑𝐾
𝑗=1 𝜆 𝑗 = 1), we must

additionally regularize the raw network output with appropriate
mapping functions (see Tab. 1). Specifically, we apply exponential
activation to 𝜆𝑖 and 𝜅𝑖 . Logistic activation is applied to 𝜃𝑖 and 𝜑𝑖 ,
which form the spherical coordinates of 𝜇𝑖 . Most importantly, we
apply the softmax function to all 𝜆s to ensure that the outputs
model a valid PDF (i.e., satisfy

∑𝐾
𝑖=1 𝜆𝑖 = 1).

Discussion. It is possible to implement different forms of im-
plicit neural representation with trainable parameters Φ. While it
is straightforward to use a monolithic network to model NPMΦ :
x → Θ, we find it difficult to fit the high-frequency variations of
the target distribution. Thereby, we use a trainable multi-resolution
spatial embedding for encoding the distributions, and additionally

(a) Discretized Subdivison (b) Continuous Encoding
Marginalization

Figure 1: Parallax issue caused by spatial discretizations (a).
For a subdivided volume S(x) in (a), the guiding distribution
is marginalized with training samples scattered over the vol-
ume S(x), and is shared by different positions (e.g., x1 and
x2). Our method will not suffer from parallax due to NPM
implicitly representing a monolithic function, continuously
mapping from spatial positions to parametric guiding distri-
butions, as shown in (b).

a lightweight neural network for decoding the parameters. This is
crucial for our method to achieve better modeling capacity while
remaining performant, as will be discussed later.

4.2 Optimizing NPM
We show how to optimize the divergence between the decoded
distribution Θ̂(x) and the target distribution using minibatch sto-
chastic gradient descent. To achieve this, the gradients of a training
objective (or loss function) with respect to the network parame-
ters are necessary. However, it is non-trivial to define such a loss
function, given the ground truth output parameters Θgt (x) are
unknown. Previous works typically use design optimization algo-
rithms (e.g., expectation-maximization) that iteratively use batches
of samples to fit a given set of parametersΘ, which often parameter-
ize a marginalized distribution shared by the spatial region covering
the samples [Herholz et al. 2016; Ruppert et al. 2020]. However, their
methods are applied to explicitly parameterized models, and are
therefore not applicable to our method, which models the implicit
representation of the function NPMΦ : x → Θ̂.

We minimize the KL divergence between the decoded vMF mix-
tures and the target distribution via minibatch stochastic gradient
descent, where its gradients with respect to the trainable parame-
ters are estimated using Monte Carlo integration. Other divergence
metrics are also available following a similar derivation. Let us start

Table 1: Detailed mapping functions we use to regularize
network outputs, where 𝜆′, 𝜅′ 𝜃 ′, 𝜑 ′ denote the raw outputs,
and (𝜃, 𝜑) is the normalized spherical coordinate of 𝜇 ∈ S2.
Left: parameter notations and their valid ranges;middle: type
of activation; right: specific mappings.

Parameter Activation Mapping
𝜅 ∈ [0, +∞) Exponential 𝜅𝑖 = exp(𝜅′

𝑖
)

𝜆 ∈ [0, +∞) Softmax 𝜆𝑖 = exp(𝜆′
𝑖
)/∑𝐾𝑗=1 exp(𝜆′𝑗)

𝜃 , 𝜑 ∈ [0, 1] Logistic 𝜃𝑖 = 1/(1 + exp(−𝜃 ′
𝑖
))

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Honghao Dong, Guoping Wang, and Sheng Li

(3) Decoder MLP(1) Implicit Spatial Representation (2) Encoded Inputs (4) Decoded Parameters (5) Learned Parametric Mixture

Auxiliary
Features

Spatial
Embedding

Back-propagationEmbedding Interpolation

Figure 2: High-level illustration of our Neural Parametric Mixtures (NPM). We implicitly encode the spatially varying target
distributions with the multi-resolution embedding. When the distribution of a spatial location x is queried, (1) the features
assigned to the nearby grid points surrounding x are interpolated at each level, and concatenated with other levels to obtain
the spatial embedding 𝐺 (x). (2) the spatial embedding is then combined with other inputs to (3) feed into the lightweight
MLP for (4) decoding the parameters Θ of the vMF mixture V(𝜔𝑖 | Θ) with 𝐾 components. We then (5) use this parametric
distribution for importance sampling the scattering direction. The result MC radiance estimate ⟨𝐿i (x, 𝜔𝑖)⟩ is used to estimate
the training gradient ∇Θ𝐷KL (Sec. 4.2), which is then back-propagated through these differentiable stages to optimize our NPM
representation (dashed lines).

by assuming that the shading position x is fixed, thus omitting the
dependency of Θ on x in the equations. For a given position, the
KL divergence between the target distribution D and our output
distribution V is defined as:

𝐷KL (D∥V;Θ) =
∫
Ω
D(𝜔) log D(𝜔)

V(𝜔 | Θ̂)
d𝜔, (7)

where D ∝ 𝐿i in radiance-based path guiding. This integral could
now be estimated with the Monte Carlo estimator with 𝑁 samples:

𝐷KL (D∥V;Θ) ≈ 1
𝑁

𝑁∑︁
𝑗=1

D(𝜔 𝑗)
𝑝 (𝜔 𝑗 | Θ̂)

log
D(𝜔 𝑗)

V(𝜔 𝑗 | Θ̂)
, (8)

where 𝑝 is the distribution from which the samples are drawn,
which in our case is a combination of the BSDF importance sampling
and guiding distribution. By taking its derivative with respect to Θ,
we obtain the MC estimate of the gradient ∇Θ𝐷KL (D∥V;Θ):

∇Θ𝐷KL (D∥V;Θ) ≈ − 1
𝑁

𝑁∑︁
𝑗=1

D(𝜔 𝑗)∇ΘV(𝜔 𝑗 | Θ̂)
𝑝 (𝜔 𝑗 | Θ̂)V(𝜔 𝑗 | Θ̂)

, (9)

where the derivatives of the vMF mixtures V with respect to their
parameters Θ are straightforward. The gradients for the trainable
NPM parameters Φ could then be obtained via back propagation.
Since we use the unbiased MC estimate of the training gradients,
the parameters are guaranteed to converge to a local minimum.

In practice, our training sample pairs (x, 𝜔𝑖) → 𝐿i are distributed
in different spatial positions x, efficiently learning a spatially vary-
ing target distribution D(x). This results in the training objective
accounting for the divergence of multiple positions. The expected
solution for Φ is thus:

Φ∗ = argmin
Φ
Ex

[
𝐷KL

(
D (x) ∥V;Θ (x)

)]
. (10)

For our implicit spatial embedding (i.e., grids of latent features,
discussed later), this results in the embedding being optimized
with all (and only) its nearby samples. When using the gradient
descent method, the samples with the largest gradients (i.e., the

most important ones for reducing divergence) would dominate,
forming a reasonable design choice for better adaptivity.

4.3 Full Integrand Learning
Using path guiding to sample the full integrand 𝑓𝑠 · 𝐿i cos𝜃𝑖 can
achieve even better performance, which should incorporate the
BSDF term and the cosine term into the target distribution. This is
challenging since the guiding distribution is now conditioned on 5D
inputs (i.e., outgoing direction𝜔o and spatial coordinate x). Previous
works fit BSDFs with precomputed parametric models and multiply
them with the learned incident radiance distribution to achieve
product sampling. However, this often relies on scene-dependent
precomputation, discretization over 𝜔o, and extra computational
overhead [Herholz et al. 2016; Ruppert et al. 2020].

Our neural design can naturally handle the conditions with the
extra input of 𝜔𝑖 . This is essential since a neural network could ap-
proximate arbitrary conditional models if being expressive enough.
We later show this improves performance through learning a better
guiding distribution, with only modest performance overhead. For
clarity, we denote the previous radiance-based method as NPM-
radiance, and this version as NPM-product.

Specifically, by supplementing input 𝜔o, we reformulate the
learned distribution (Eq. 6) with the outgoing directions. This en-
ables learning the full integrated as:

NPMproduct (x, 𝜔o | Φ) = Θ̂(x, 𝜔o), (11)

where Θ̂ now parameterizes the vMF mixtureV that is trained to
approximate the full integrand in Eq. 1, i.e.,

V
(
𝜔𝑖 | Θ̂

(
x, 𝜔o

))
∝ 𝑓s

(
x, 𝜔o, 𝜔i

)
𝐿i

(
x, 𝜔i

) ��cos𝜃i�� , (12)

where the cosine term could be approximated with a constant vMF
lobe [Ruppert et al. 2020], leaving NPM to focus on the remaining
part of the integral. Nonetheless, it is still challenging for neural
networks to model a 2D directional distribution conditioned on

Neural Parametric Mixtures for Path Guiding SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

5D spatio-directional inputs. We further use the following sim-
ple extensions to help the network learn these spatially varying
distributions:

Auxiliary Feature Inputs. Following the practices in prior work
[Hadadan et al. 2021; Müller et al. 2021], we additionally input
the surface normal and roughness as auxiliary features to help
the network better correlate the target distribution with e.g., local
shading frame (normal) and spatially varying BSDFs (roughness).
Experimentally, we find this helps the network to better capture the
spatio-directional correlations, while with a small computational
overhead due to additional memory traffic.

Input Encoding. It is challenging for a neural network to model
the non-linearity between multidimensional inputs and outputs,
especially when our outputs are distributions with high-frequency
spatial variations. Therefore, we replace the spatial input x with our
trainable multi-resolution spatial embedding (discussed in Sec. 5.1).
For the other inputs (e.g., outgoing direction𝜔o and surface normals
n(x)), we encode them using the spherical harmonics basis, which
is previously established in NeRF [Verbin et al. 2022].

5 IMPLEMENTATION
In this section, we provide the technical details that are crucial to
the performance and practicality of our NPM implementation.

5.1 Multi-resolution Spatial Embedding
Our implicit NPM representation learns a continuous mapping
NPMΦ : x → Θ̂ (with the additional input 𝜔o ∈ S2 in the extended
version), where Θ ∈ R4×𝐾 defines the learned target distribution.
While a straightforward solution would be using a multi-layer
perceptron (MLP) as the universal function approximator to model
NPMΦ, we experimentally found it difficult to capture the high-
frequency spatial variations of the target distributions.

Therefore, we use a learnable spatial embedding to implicitly
encode the learned parametric mixtures. Similar approaches are
found successful in recent NeRF-like applications [Müller et al.
2022; Munkberg et al. 2022]. Specifically, we define 𝐿 3D uniform
grids 𝐺𝑙 , each covering the entire scene with a spatial resolution
of 𝐷3

𝑙
, where 𝐺𝑙 denotes the 𝑙-th embedding grid. 𝐷𝑙 grows expo-

nentially, resulting in multiple resolutions of the embedding. We
then assign a learnable embedding (a latent feature vector 𝑣 ∈ R𝐹)
to each lattice point of 𝐺𝑙 . To query the spatial embedding for x,
we bilinearly interpolate the features nearby x for each resolution,
and concatenate them to obtain the final embedding 𝐺 (x). More
formally:

𝐺 (x | ΦE) =
𝐿
⊕
𝑙=1

bilinear
(
x,𝑉𝑙 [x]

)
, 𝐺 : R3 → R𝐿×𝐹 , (13)

where 𝑉𝑙 [x] is the set of features at the eight corners of the cell
enclosing x within 𝐺𝑙 . The spatial embedding 𝐺 (x) is then con-
catenated with other inputs (e.g., 𝜔o and auxiliary features) to the
MLP for decoding the parameters Θ. We thus formulate the desired
mapping (taking Eq. 6 for example) as a two-step procedure:

MLP
(
𝐺 (x | ΦE)

�� ΦM
)
= Θ̂(x), (14)

where the parameters of the spatial embedding (ΦE) and the MLP
(ΦM) together constitute the trainable parameters Φ of our implicit
representation for NPM. Intuitively, a spatial embedding implic-
itly encodes the target distribution within a specific spatial region,
while the multi-resolution design efficiently accounts for different
levels of detail (LOD). By smoothly interpolating between the spa-
tial embedding around positions and decoding them using neural
networks, we naturally account for the spatial variations of the
target distribution. This also lessens the burden of using a single
monolithic MLP as the implicit representation, leaving it mainly
focusing on decoding it into parametric modelsΘ. This significantly
accelerates training/inference with a larger memory footprint.

5.2 Online Training Scheme
Renderer Integration. We implement our method on a custom

GPU-accelerated renderer based on OptiX [Parker et al. 2010],
where the training and inference procedures are integrated into a
wavefront-style path tracer [Laine et al. 2013]. This design choice
allows ray casting, importance sampling, and BSDF evaluation to
be performed in coherent chunks over large sets of traced paths
by splitting the traditional megakernel path tracer into multiple
specialized kernels. This improves GPU thread utilization by reduc-
ing the control flow divergence. Most importantly, this allows us
to efficiently sample and evaluate the guiding distributions at each
vertex along the path in parallel, thus significantly accelerating
network training/inference.

Specifically, we place the training/inference samples into queues,
where the structure-of-arrays (SoA) memory layout is applied to
improve memory locality. At each ray intersection of the chunk of
traced paths, the queries for guiding distributions within the queue
are processed via batched network inference. The sampling and
evaluation procedures are then performed, also using specialized
kernels, before entering the next ray-cast kernel. This provides our
method with maximum parallelism through large-batch training
and inference, minimizing the latency caused by waiting network
queries, while avoiding inefficient single-sample inference.

Training Scheme. We use the same configuration to train each
scene online during rendering, without any scene-specific fine-
tuning or pre-computation. During training, we collect MC radiance
estimates along each traced path, and split them into mini-batches
for training. The optimization step is performed for each spp, which
allows drawing samples to be drawn from the latest guiding dis-
tribution. The distribution of the samples (for both rendering and
training) is thus gets refined as training proceeds. We stop the
training process after a fixed fraction of the total rendering budget
(either time or sample count). While we always set this to 25% in
our experiments, we find our NPM technique converges quickly
during training, generally reaching a local minimum after about
150spp, which amounts to about 1000 training steps/batches and
15s (including the runtimes of both training and rendering) on GPU.

5.3 Guiding Network
We implement our network on the tiny-cuda-nn framework [Müller
2021] and integrate it into our renderer. The MLP we used (for both
NPM-radiance and NPM-product) contains 3 linear layers of width
64. Each layer with ReLU activation, except for the last layer with

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Honghao Dong, Guoping Wang, and Sheng Li

VEACH DOOR

0.25447 0.22067 0.09358 0.06208 relMSE

0.13933 0.1117 0.04708 0.02874 relMSE

Müller et al. Rath et al. Ours (radiance) Ours (product) Reference

32 512 SPP
0.01

0.1

1.0

re
lM

SE

BATHROOM
0.10274 0.09913 0.03683 0.03373 relMSE

0.217 (82s) 0.194 (91s) 0.075 (65s) 0.046 (77s) relMSE/Time(s)

0.053 (106s) 0.049 (107s) 0.025 (101s) 0.020 (108s) relMSE/Time(s)

0.05207 0.04305 0.02761 0.02898 relMSE

32 512 SPP
0.01

0.1

1.0re
lM

SE

Figure 3: Equal-sample-count (750spp) comparisons for two scenes. We show the error (for both the zoom-in areas and whole
images) and time cost of different methods. The yellow plots (as well as the other figures) refer to the results obtained by
unidirectional path tracing.

our custom mapping functions (Tab. 1). We let the network output
𝐾 = 8 vMF components, i.e., Θ ∈ R8×4. For the multi-resolution
spatial embedding, we use 𝐿 = 8 grids with increasing resolutions
for each level. The coarsest level has a resolution of 𝐷1 = 8 while
the finest level has 𝐷8 = 86. The feature of each level contains
𝐹 = 4 floats, resulting in the final spatial embedding 𝐺 (x) ∈ R8×4.
In practice, we find that the performance of the network could
be improved by enlarging the capacity of the MLP or the spatial
embedding, leaving this a trade-off between quality and speed.

For training, we use a fixed learning rate of 0.005 that is large
enough to acquire a fast convergence speed. Adaptive momentum
techniques like Adam [Kingma and Ba 2015] are used for more ro-
bust training and better convergence. For importance sampling the
decoded mixtures, we use the numerically stable strategy for vMF
[Jakob 2012]. When inference, we also apply exponential moving
average (EMA) to the weights of previous training steps, which
better reduces the noise of the MC estimated gradients (Eq. 9).

6 RESULTS AND DISCUSSION
We run all the experiments on an Intel Core i9-11900 CPU and an
NVIDIA RTX3070 GPU. Following the similar practices of previous
works [Müller 2019; Rath et al. 2020], we disable NEE and Russian
roulette for all methods and set the maximum path length to 10. All
methods are implemented upon a GPU path tracing renderer.

We render all images at the resolution of 1280×720, and evaluate
image quality using mean relative squared error (relMSE). All the
images, additional metrics (MAPE and MRSE), and the false-color
maps can be interactively inspected with our supplementary viewer.

6.1 Comparisons
Our method is compared against improved PPG [Müller 2019] (an
enhanced version of Practical Path Guiding [Müller et al. 2017]),

and Variance-aware Path Guiding [Rath et al. 2020]. For the experi-
mental configuration of the compared methods, we use the same as
[Rath et al. 2020], except for fixing the BSDF selection probability
to 50% (for both ours and the compared methods). Both compared
methods used an iteratively reconstructed subdivision structure
(i.e., the spatio-directional trees) to account for spatial variations.
A total of 10 different scenes were tested.

We first show equal-spp comparisons on two representative
scenes. The Veach Door scene features strong indirect illumina-
tion that is difficult to handle with BSDF importance sampling,
while the Bathroom scene contains many specular and glossy
surfaces. As shown in Fig. 3, our proposed method outperforms
the other two methods even when only learning incident radi-
ance 𝐿i (NPM-radiance). The noise is alleviated further with our
full integrand learning method (NPM-product), since both of the
scenes contain glossy surfaces, where the contribution of samples
is strongly influenced by the BSDF term. We also note that our
method quickly becomes effective at the very beginning of the
training process (see the convergence plots in Fig. 3). This indicates
a better training efficiency over classical guiding methods, which
will be discussed later. Additional results on more test scenes are
shown in Fig. 4 and Tab. 2, as well as the convergence plots in Fig. 5.

We then show the results of equal-time comparisons between
our method and [Rath et al. 2020] in Fig. 6. Since they do not ex-
plicitly learn the product sampling distribution (i.e., conditioned
on 5D inputs 𝜔o and x), we only use our radiance-based method
(NPM-radiance) for fair comparisons. Instead of simply learning the
incident radiance distribution (𝐿i), they use an improved target dis-
tribution to account for the variance and BSDF (marginalized over
𝜔o). Our method, on the other hand, achieves better performance
by learning 𝐿i only. We attribute this superiority of our method to
both the better capacity of capturing spatio-directional correlation
and more parallelism.

Neural Parametric Mixtures for Path Guiding SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Table 2: Practical Path Guiding (PPG) [Müller 2019], Variance-aware Path Guiding [Rath et al. 2020], unidirectional path tracing
and our method on 10 test scenes. We report relMSE, render time, and speedup using PPG as the baseline. Our NPM technique
consistently reduces the error in the test scenes.

[Müller 2019] [Rath et al. 2020] Ours
PT (BSDF) PPG (baseline) Variance. PG NPM (radiance) NPM (product)

Bathroom 0.0905 48s 0.0530 1.0 × 106s 0.0485 1.09 × 107s 0.0251 2.11 × 101s 0.0203 2.61 × 108s
Bedroom 0.0383 40s 0.0201 1.0 × 105s 0.0161 1.26 × 109s 0.0150 1.35 × 84s 0.0146 1.38 × 90s
Breakfast Room 0.0094 48s 0.0069 1.0 × 100s 0.0047 1.46 × 103s 0.0038 1.80 × 63s 0.0035 1.96 × 71s
Living Room 0.0273 32s 0.0184 1.0 × 74s 0.0146 1.26 × 80s 0.0157 1.17 × 47s 0.0132 1.39 × 54s
Pink Room 0.0046 37s 0.0082 1.0 × 74s 0.0061 1.34 × 76s 0.0033 2.42 × 53s 0.0026 3.21 × 62s
Salle de Bain 0.0819 38s 0.0223 1.0 × 116s 0.0346 0.64 × 116s 0.0196 1.14 × 79s 0.0140 1.59 × 86s
Staircase 0.1812 34s 0.0298 1.0 × 80s 0.0261 1.14 × 86s 0.0194 1.54 × 72s 0.0172 1.74 × 76s
Veach Door 0.6208 33s 0.2167 1.0 × 82s 0.1945 1.11 × 91s 0.0750 2.89 × 65s 0.0461 4.69 × 77s
Veach Egg 8.2918 33s 0.8379 1.0 × 82s 0.7870 1.07 × 85s 0.5984 1.40 × 62s 0.5352 1.56 × 69s
White Room 0.0301 38s 0.0278 1.0 × 107s 0.0253 1.10 × 103s 0.0124 2.25 × 76s 0.0100 2.75 × 87s

6.2 Evaluation
Trainable Spatial Embedding. We analyze the performance of dif-

ferent forms of spatial input encoding in terms of convergence and
quality (Fig. 8). The spatial embedding (i.e. parametric encoding)
uses trainable latent vector grids to model the spatially-varying
target distributions, leaving the MLP to focus on decoding this
implicit representation into valid vMF mixtures. The other two vari-
ants do not explicitly separate these two tasks by using a monolithic
MLP. The addition of spatial embedding significantly improves con-
vergence, and the multi-resolution design further reduces error
by better modeling finer-grained spatio-directional correlations.
Furthermore, this does not introduce noticeable computational
overhead, as only a small fraction of parameters are involved in
each training/inference.

Training Efficiency. The effectiveness of guiding methods under
small training budgets is important, especially for applications such
as preview rendering or even interactive rendering. We analyze the
training efficiency of different guiding methods by comparing their
performance under different training budgets (31 spp, 63 spp, 127
spp, respectively) in Fig. 7. Our method quickly converges to a good
sampling distribution with only a few training samples and less
training time cost (e.g., 31 spp with about 3s), thus outperforming
previous guiding methods even with much fewer training samples.

6.3 Discussion
Path Guiding Extensions. Ourmethod can be extendedwithmany

well-established extensions suggested by previous path guiding al-
gorithms. They are straightforward to be integrated and are promis-
ing to further improve our performance. For example: (1) the BSDF
selection probability could also be learned by our network or by
some other caching strategies [Müller et al. 2020], thus better han-
dling the near-specular surfaces; and (2) the improved variance-
aware target distribution [Rath et al. 2020] could be learned to
account for the variance within the noisy MC estimates.

Performance Analysis. Our method serves effective means for
path guiding while remaining performance practical. Specifically,

the measured time cost per NPM evaluation (including both net-
work inference and importance sampling the decoded mixture mod-
els) at 1280 × 720 is about 3ms. Meanwhile, a training step (i.e., a
batch of 218 samples) costs about 10ms, indicating that a typical
training process (about 1000 training steps) takes about 10s to con-
verge on a single GPU. NPM contains a total of about 2M learnable
parameters, resulting in a memory consumption of < 10MB. The
compact design of our implicit NPM representation results in less
control flow divergence, better memory locality, and better caching
performance. Together, this makes our method practical for mod-
ern GPU parallelization, which is often harder to achieve with the
tree-like spatial subdivision schemes used by most of the previous
guiding methods.

Alternative Solutions. Several studies also aim to tackle the par-
allax issue. Dodik et al. [2022] use spatio-directional mixtures (i.e.,
conditioned on x and 𝜔o) to correlate target distributions with
spatial positions. Ruppert et al. [2020] design strategies to warp
the guiding distributions in the spatial subdivisions to resemble
the true distribution. However, these methods adopt sophisticated
strategies that are difficult to parallelize efficiently on GPUs (e.g.,
batched expectation-maximization (EM) applied to a varying num-
ber of mixtures) while requiring extra efforts to fit scene BSDFs for
product sampling. In contrast, our method exploits trainable spatial
embedding to encode the target distributions while using a de-
coder MLP to model the non-linearity between spatial features and
PMMs in a GPU-friendly manner. Nevertheless, incorporating ideas
from these studies, such as adaptively controlling the granularity
of learned distributions, may further enhance our method.

7 CONCLUSION, LIMITATIONS AND FUTURE
WORK

Wepresent Neural ParametricMixtures, a novel method for learning
the target distributions for path guiding techniques. We use a com-
pact implicit neural representation to encode the spatio-directional
parametric distributions. Compared to previous non-neural meth-
ods that use explicit spatial subdivision structures to store direc-
tional distributions, our continuous implicit representation is sim-
pler and more efficient while naturally avoiding the artifacts (e.g.,

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Honghao Dong, Guoping Wang, and Sheng Li

parallax) caused by their discretized subdivision schemes. Our NPM
technique could be efficiently trained with stochastic gradient de-
scent to minimize the divergence from the target distribution.

Despite the simplicity and effectiveness of our method, the main
limitation resides in the lack of flexibility of our directional distribu-
tion representation, i.e., a fixed number of vMF components. While
a similar issue exists in classical methods using PMMs [Dodik et al.
2022; Herholz et al. 2016], recent methods achieve more accurate
directional distributions by adaptively merging and splitting the
vMF components [Ruppert et al. 2020]. This, however, is non-trivial
to apply to our NPM technique.

In future work, we will investigate more accurate approaches to
implicitly encode parametric distributions while remaining efficient.
Finding better basis functions or adaptively controlling the number
of output components are two possible but challenging directions.
Meanwhile, we would like to improve the efficiency of our method
by using either novel architectural designs for neural networks,
optimized implementation, or adapting previous extensions to path
guiding algorithms. We believe these are important steps to make
our method more practical for interactive or even real-time ren-
dering pipelines, as well as other related applications that require
fitting distributions with high-frequency spatial variations. In ad-
dition, applying our method to bidirectional path tracing [Popov
et al. 2015], especially subspace probabilistic connections [Su et al.
2022], will also be an interesting future avenue.

ACKNOWLEDGMENTS
This project was supported by the National Key R&D Program of
China (No.2022YFB3303400) and NSFC of China (No. 62172013).
We also thank the test scenes providers: Mareck (Bathroom), Slyk-
Drako (Bedroom), Wig42 (Breakfast Room, Living Room, Pink
Room, Staircase), nacimus (Salle de Bain), Jaakko Lehtinen
(Veach Door), Jay-Artist (White Room), as well as the efforts
for converting scene formats by Benedikt Bitterli [2016].

REFERENCES
Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.
Norbert Bus and Tamy Boubekeur. 2017. Double Hierarchies for Directional Importance

Sampling in Monte Carlo Rendering. Journal of Computer Graphics Techniques
(JCGT) 6, 3 (28 August 2017), 25–37. http://jcgt.org/published/0006/03/02

R. R. Currius, D. Dolonius, U. Assarsson, and E. Sintorn. 2020. Spherical Gaussian
Light-field Textures for Fast Precomputed Global Illumination. Computer Graphics
Forum 39, 2 (2020), 133–146.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2017. Density estimation using
Real NVP. In International Conference on Learning Representations.

Stavros Diolatzis, Julien Philip, and George Drettakis. 2022. Active Exploration for
Neural Global Illumination of Variable Scenes. ACM Transactions on Graphics
(2022).

Ana Dodik, Marios Papas, Cengiz Öztireli, and Thomas Müller. 2022. Path Guiding
Using Spatio-Directional Mixture Models. In Computer Graphics Forum, Vol. 41.
Wiley Online Library, 172–189.

Saeed Hadadan, Shuhong Chen, and Matthias Zwicker. 2021. Neural radiosity. ACM
Transactions on Graphics (TOG) 40, 6 (2021), 1–11.

Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek.
2016. Product importance sampling for light transport path guiding. In Computer
Graphics Forum, Vol. 35. Wiley Online Library, 67–77.

Yuchi Huo, Rui Wang, Ruzahng Zheng, Hualin Xu, Hujun Bao, and Sung-Eui Yoon.
2020. Adaptive incident radiance field sampling and reconstruction using deep
reinforcement learning. ACM Transactions on Graphics (TOG) 39, 1 (2020), 1–17.

Wenzel Jakob. 2012. Numerically stable sampling of the von Mises-Fisher distribution
on S^2 (and other tricks). Interactive Geometry Lab, ETH Zürich, Tech. Rep (2012), 6.

Henrik Wann Jensen. 1995. Importance driven path tracing using the photon map. In
Eurographics Workshop on Rendering Techniques. Springer, 326–335.

James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. (1986).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
ICLR (2015).

Eric P Lafortune and Yves D Willems. 1995. A 5D tree to reduce the variance of Monte
Carlo ray tracing. In Eurographics Workshop on Rendering Techniques. Springer,
11–20.

Samuli Laine, Tero Karras, and Timo Aila. 2013. Megakernels considered harmful:
Wavefront path tracing on GPUs. In Proceedings of the 5th High-Performance Graph-
ics Conference. 137–143.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In ECCV.

Thomas Müller. 2019. "Practical Path Guiding" in Production. In ACM SIGGRAPH 2019
Courses (SIGGRAPH ’19). ACM, New York, NY, USA, Article 18, 77 pages.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022), 15 pages.

Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical path guiding for efficient
light-transport simulation. In Computer Graphics Forum, Vol. 36. Wiley Online
Library, 91–100.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
2019. Neural importance sampling. ACM Transactions on Graphics (TOG) 38, 5
(2019), 1–19.

Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural
control variates. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–19.

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-Time
Neural Radiance Caching for Path Tracing. ACM Trans. Graph. 40, 4, Article 36 (jul
2021), 16 pages.

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex
Evans, Thomas Mueller, and Sanja Fidler. 2022. Extracting Triangular 3D Models,
Materials, and Lighting From Images. CVPR (2022).

Thomas Müller. 2021. tiny-cuda-nn. https://github.com/NVlabs/tiny-cuda-nn
Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,

David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
et al. 2010. Optix: a general purpose ray tracing engine. ACM Transactions on
Graphics (TOG) 29, 4 (2010), 1–13.

S. Popov, R. Ramamoorthi, F. Durand, and G. Drettakis. 2015. Probabilistic Connections
for Bidirectional Path Tracing. Computer Graphics Forum 34, 4 (07 2015), 75–86.

Alexander Rath, Pascal Grittmann, Sebastian Herholz, Petr Vévoda, Philipp Slusallek,
and Jaroslav Křivánek. 2020. Variance-aware path guiding. ACM Transactions on
Graphics (TOG) 39, 4 (2020), 151–1.

Lukas Ruppert, Sebastian Herholz, and Hendrik PA Lensch. 2020. Robust fitting of
parallax-aware mixtures for path guiding. ACM Transactions on Graphics (TOG) 39,
4 (2020), 147–1.

Fujia Su, Sheng Li, and Guoping Wang. 2022. SPCBPT: Subspace-Based Probabilistic
Connections for Bidirectional Path Tracing. ACM Trans. Graph. 41, 4, Article 77
(jul 2022), 14 pages. https://doi.org/10.1145/3528223.3530183

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T. Barron, and
Pratul P. Srinivasan. 2022. Ref-NeRF: Structured View-Dependent Appearance for
Neural Radiance Fields. CVPR (2022).

Jiří Vorba, Johannes Hanika, Sebastian Herholz, Thomas Müller, Jaroslav Křivánek, and
Alexander Keller. 2019. Path Guiding in Production. InACM SIGGRAPH 2019 Courses
(Los Angeles, California) (SIGGRAPH ’19). ACM, New York, NY, USA, Article 18,
77 pages.

Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.
On-line learning of parametric mixture models for light transport simulation. ACM
Transactions on Graphics (TOG) 33, 4 (2014), 1–11.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021.
PlenOctrees for Real-time Rendering of Neural Radiance Fields. In ICCV.

Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Hen-
rik Wann Jensen, Hao Su, and Ravi Ramamoorthi. 2021. Hierarchical neural recon-
struction for path guiding using hybrid path and photon samples. ACM Transactions
on Graphics (TOG) 40, 4 (2021), 1–16.

http://jcgt.org/published/0006/03/02
https://github.com/NVlabs/tiny-cuda-nn
https://doi.org/10.1145/3528223.3530183

Neural Parametric Mixtures for Path Guiding SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA
SA
LL
E
DE

BA
IN

0.10518 0.03472 0.02355 0.01879 0.01427 relMSE

0.07984 0.02967 0.01928 0.02546 0.01851 relMSE

PT (BSDF) Müller et al. Rath et al. Ours (radiance) Ours (product) Reference

0.08186 (38s) 0.02225 (116s) 0.03456 (116s) 0.01959 (79s) 0.01396 (86s) relMSE/Time(s)

BE
DR
OO

M

0.03513 0.03551 0.03333 0.01702 0.01495 relMSE

0.05096 0.03733 0.0332 0.02034 0.02193 relMSE
0.03827 (40s) 0.0202 (105s) 0.01609 (109s) 0.01497 (84s) 0.01461 (90s) relMSE/Time(s)

W
HI
TE

RO
OM

0.03189 0.05906 0.04911 0.02628 0.02406 relMSE

0.0695 0.05768 0.05152 0.02834 0.02024 relMSE
0.03017 (38s) 0.02779 (107s) 0.02528 (103s) 0.01237 (76s) 0.01009 (87s) relMSE/Time(s)

ST
AI
RC
AS
E

0.18686 0.04274 0.04059 0.02901 0.03051 relMSE

0.16013 0.04372 0.03828 0.02352 0.02397 relMSE
0.18115 (34s) 0.02984 (80s) 0.02613 (86s) 0.0194 (72s) 0.01717 (76s) relMSE/Time(s)

PI
NK

RO
OM

0.00602 0.02461 0.01882 0.00502 0.00347 relMSE

0.00508 0.0142 0.0111 0.00534 0.00309 relMSE
0.00465 (37s) 0.00819 (74s) 0.00611 (76s) 0.00338 (53s) 0.00255 (62s) relMSE/Time(s)

VE
AC
H
EG
G

5.01054 2.96971 1.70151 1.29121 1.85011 relMSE

5.23864 1.26436 1.38238 1.3625 1.15729 relMSE
8.29189 (33s) 0.83794 (82s) 0.78703 (85s) 0.59848 (62s) 0.53521 (69s) relMSE/Time(s)

Figure 4: Visual comparisons using the same experimental setup with Fig. 3, all are rendered with 750spp at 1280 × 720. We
use the online training setup for all the guiding methods, i.e., all the samples are included in the final rendering. Our method
exhibits better performance than other guiding methods in most scenes by only learning the incident radiance term while
further reducing the error by incorporating the BSDF term (i.e., product sampling). More results on other test scenes, additional
error metrics and false-color visualizations are provided in our supplementary interactive viewer.

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Honghao Dong, Guoping Wang, and Sheng Li

32 512 SPP
0.01

0.1

0.5

32 512 SPP
0.01

0.1

0.5

32 512 SPP
0.01

0.1

0.5

32 512 SPP
0.01

0.1

0.5

32 512 SPP
0.01

0.1

0.5

re
lM

SE

VEACH DOOR LIVING ROOM BATHROOM BEDROOM STAIRCASE

32 512 SPP
0.4

1.5

5

32 512 SPP
0.01

0.1

0.5

32 512 SPP

0.01

0.1

0.5

32 512 SPP
0.01

0.1

0.5

32 512 SPP

0.01

0.1

0.5

re
lM

SE

VEACH EGG SALLE DE BAIN BREAKFAST ROOM WHITE ROOM PINK ROOM

PT (BSDF) NPM (radiance) NPM (product)Müller et al. 2019 Rath et al. 2020

Figure 5: Convergence plots correspond to Fig. 3 and Fig. 4. Unidirectional path tracing with BSDF importance sampling
(PT-BSDF), Practical Path Guiding [Müller 2019], Variance-aware Path Guiding [Rath et al. 2020] and our method with different
target distributions (NPM-radiance and NPM-product). Our methods consistently outperform these classical guiding methods,
and quickly become effective even with a few training samples and short training time (e.g., 30spp, amounting to about 3
seconds on GPU), indicating practicality for preview or even interactive rendering. We attribute this success to the compact
implicit representation and better spatial resolution of our method. The image results and detailed statistics could be inspected
in the supplemental materials.

Rath et al. 950 spp

732 spp NPM (radiance)

SALLE DE BAIN

0.04579 0.03493 relMSE

0.32798 0.10743 relMSE

Rath et al. NPM (rad.) Reference

0.05407 0.04926 relMSE
Rath et al. 810 spp

684 spp NPM (radiance)

BEDROOM

0.04441 0.01457 relMSE

0.04189 0.01737 relMSE

0.02176 0.01324 relMSE

Figure 6: Equal-time comparisons (80s) on two test scenes
between NPM(radiance) and Variance-aware Path Guiding
[Rath et al. 2020].

63 SPP31 SPP 127 SPP

0.24670.5985 0.1646

Rath et al.
63 SPP31 SPP 127 SPP

0.10040.1103 0.0643

NPM (radiance)

1.0×

0.4323

1.0×

0.2069

1.0×

0.1475

5.4×

0.0834

2.2×

0.0727

2.5×

0.0509

Figure 7: We train each guiding method with small training
budgets (31 spp, 63 spp, 127 spp, respectively) and render
the scene with 500 spp. Our method outperforms previous
methods even with much fewer training samples.

No Encoding

620 spp 0.10972

Frequency

540 spp 0.05964

Single-resolution

520 spp 0.05108

Multi-resolution

530 spp 0.03666
STAIRCASE 3 25 45sec0.01

0.1

1

re
lM

SE

Figure 8: Equal-time comparison (50s) of different input en-
coding. We report the sample count and error (relMSE) of
eachmethod. The dashed line in the plotmarks the end of the
training phase. The multi-resolution spatial embedding out-
performs other methods while remaining training-efficient.
Yellow plot refers to path tracing with BSDF importance sam-
pling.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Neural Parametric Mixtures
	4.1 Radiance-based NPM
	4.2 Optimizing NPM
	4.3 Full Integrand Learning

	5 Implementation
	5.1 Multi-resolution Spatial Embedding
	5.2 Online Training Scheme
	5.3 Guiding Network

	6 Results and Discussion
	6.1 Comparisons
	6.2 Evaluation
	6.3 Discussion

	7 Conclusion, Limitations and Future Work
	Acknowledgments
	References

